Jefferson Middle School Syllabus

Major Assignments: There are no major assignments for this class.

Students will begin the course with transformational geometry including rigid transformations, congruence, scale drawings, dilations, and similarity. Then students work with equivalent expressions and linear equations in one and two variables, including linear relationships and functions. Students then work with exponents, the properties of exponents and scientific notation. The students encounter irrational numbers for the first time and informally extend the rational number system to the real number system.

Field Trips: None planned at this time.

How can parents access instructional materials? Canvas.

Use the link to access the online curriculum: https://im.kendallhunt.com/MS_ACC/students/2/index.html

- **7.G.A.2** Draw geometric shapes with given conditions. Focus on constructing triangles from three measures of angles or sides, noticing when the conditions determine a unique triangle, more than one triangle, or no triangle.
- **7.G.B.4** Know and use facts about supplementary, complementary, vertical, and adjacent angles in a multi-step problem to write and solve simple equations for an unknown angle in a figure.
- **8.G.A.1** Verify experimentally the properties of rotations, reflections, and translations:
- **a.** Lines are taken to lines, and line segments to line segments of the same length.
- **b.** Angles are taken to angles of the same measure.
- c. Parallel lines are taken to parallel lines.
- **8.G.A.2** Describe the effect of dilations, translations, rotations, and reflections on two-dimensional figures using coordinates.
- **8.G.A.3** Use informal arguments to establish facts about the angle sum and exterior angle of triangles, about the angles created when parallel lines are cut by a transversal, and the angle-angle criterion for similarity of triangles. For example, arrange three copies of the same triangle so that the sum of the three angles appears to form a line, and give an argument in terms of transversals why this is so.

- **7.RP.A.2** Recognize and represent proportional relationships between quantities.
- **a.** Decide whether two quantities are in a proportional relationship (e.g., by testing for equivalent ratios in a table or graphing on a coordinate plane and observing whether the graph is a straight line through the origin).
- **b**. Identify the constant of proportionality (unit rate) in tables, graphs, equations, diagrams, and verbal descriptions of proportional relationships.
- **c**. Represent proportional relationships by equations. For example, if total cost t is proportional to the number n of items purchased at a constant price p, the relationship between the total cost and the number of items can be expressed as t = pn.
- **d.** Explain what a point (x, y) on the graph of a proportional relationship means in terms of the situation, with special attention to the points (0, 0) and (1, r) where r is the unit rate.
- **7.RP.A.3** Use proportional relationships to solve multi-step ratio and percent problems. *Examples: simple interest, tax, markups and markdowns, gratuities and commissions, fees, percent increase and decrease, percent error.*
- 7.G.A.1 Solve problems involving scale drawings of geometric figures, including computing actual lengths and areas from a scale drawing and reproducing a scale drawing at a different scale.
- **7.G.B.5** Solve real-world and mathematical problems involving area, volume, and surface area of two- and three-dimensional objects composed of triangles, quadrilaterals, polygons, cubes, and right prisms.
- **8.G.A.2** Describe the effect of dilations, translations, rotations, and reflections on two-dimensional figures using coordinates.
- **8.G.A.3** Use informal arguments to establish facts about the angle sum and exterior angle of triangles, about the angles created when parallel lines are cut by a transversal, and the angle-angle criterion for similarity of triangles. For example, arrange three copies of the same triangle so that the sum of the three angles appears to form a line, and give an argument in terms of transversals why this is so.
- **8.EE.B.6** Use similar triangles to explain why the slope m is the same between any two distinct points on a non-vertical line in the coordinate plane; know and derive the equation y = mx for a line through the origin and the equation y = mx + b for a line intercepting the vertical axis at b.

Term 2

7.EE.A.2 Understand that rewriting an expression in different forms in a contextual problem can provide multiple ways of interpreting the problem and how the quantities in it are related. For example, shoes are on sale at a 25% discount. How is the discounted price P related to the original cost C of the shoes? C - .25C = P. In other words, P is 75% of the original cost for C - .25C can be written as .75C.

- **7.EE.B.3** Solve multi-step real-world and mathematical problems posed with positive and negative rational numbers presented in any form (whole numbers, fractions, and decimals).
- **a.** Apply properties of operations to calculate with numbers in any form; convert between forms as appropriate.
- **b.** Assess the reasonableness of answers using mental computation and estimation strategies.
- **7.EE.B.4** Use variables to represent quantities in a real-world or mathematical problem, and construct simple equations and inequalities to solve problems by reasoning about the quantities.
- **a.** Solve contextual problems leading to equations of the form px + q = r and p(x + q) = r, where p, q, and r are specific rational numbers. Solve equations of these forms fluently. Compare an algebraic solution to an arithmetic solution, identifying the sequence of the operations used in each approach. For example, the perimeter of a rectangle is 54 cm. Its length is 6 cm. What is its width?

- **7.NS.A.1** Apply and extend previous understandings of addition and subtraction to add and subtract rational numbers; represent addition and subtraction on a horizontal or vertical number line diagram.
- **a.** Describe situations in which opposite quantities combine to make 0.
- **b.** Understand p + q as the number located a distance |q| from p, in the positive or negative direction depending on whether q is positive or negative. Show that a number and its opposite have a sum of 0 (are additive inverses). Interpret sums of rational numbers by describing real world contexts.
- **c.** Understand subtraction of rational numbers as adding the additive inverse p q = p + (-q). Show that the distance between two rational numbers on the number line is the absolute value of their difference, and apply this principle in real-world contexts.
- **d.** Apply properties of operations as strategies to add and subtract rational numbers.
- **7.EE.A.1** Apply properties of operations as strategies to add, subtract, factor, and expand linear expressions with rational coefficients.
- **7.EE.B.4** Use variables to represent quantities in a real-world or mathematical problem, and construct simple equations and inequalities to solve problems by reasoning about the quantities.
- **a.** Solve contextual problems leading to equations of the form px + q = r and p(x + q) = r, where p, q, and r are specific rational numbers. Solve equations of these forms fluently. Compare an algebraic solution to an arithmetic solution, identifying the sequence of the operations used in each approach. For example, the perimeter of a rectangle is 54 cm. Its length is 6 cm. What is its width?
- **8.EE.C.7** Solve linear equations in one variable.
- **a.** Give examples of linear equations in one variable with one solution, infinitely many solutions, or no solutions. Show which of these possibilities is the case by successively transforming the given equation into simpler forms, until an equivalent equation of the form x = a, a = a, or a = b results (where a and b are different numbers).
- **b.** Solve linear equations with rational number coefficients, including equations whose solutions require expanding expressions using the distributive property and collecting like terms.

- **8.EE.B.5** Graph proportional relationships, interpreting the unit rate as the slope of the graph. Compare two different proportional relationships represented in different ways. For example, compare a distance-time graph to a distance-time equation to determine which of two moving objects has greater speed.
- **8.EE.B.6** Use similar triangles to explain why the slope m is the same between any two distinct points on a non-vertical line in the coordinate plane; know and derive the equation y = mx for a line through the origin and the equation y = mx + b for a line intercepting the vertical axis at b.
- **8.EE.C.8** Analyze and solve systems of two linear equations.
- a. Understand that solutions to a system of two linear equations in two variables correspond to points of intersection of their graphs, because points of intersection satisfy both equations simultaneously.
- **b.** Solve systems of two linear equations in two variables algebraically, and estimate solutions by graphing the equations. Solve simple cases by inspection. For example, 3x + 2y = 5 and 3x + 2y = 6 have no solution because 3x + 2y cannot simultaneously be 5 and 6.
- **c.** Solve real-world and mathematical problems leading to two linear equations in two variables. For example, given coordinates for two pairs of points, determine whether the line through the first pair of points intersects the line through the second pair.
- **8.SP.A.1** Construct and interpret scatter plots for bivariate measurement data to investigate patterns of association between two quantities. Describe patterns such as clustering, outliers, positive or negative association, linear association, and nonlinear association.
- **8.SP.A.2** Know that straight lines are widely used to model relationships between two quantitative variables. For scatter plots that suggest a linear association, informally fit a straight line and informally assess the model fit by judging the closeness of the data points to the line.
- **8.SP.A.3** Use the equation of a linear model to solve problems in the context of bivariate measurement data, interpreting the slope and intercept. For example, in a linear model for a biology experiment, interpret a slope of 1.5 cm/hr as meaning that an additional hour of sunlight each day is associated with an additional 1.5 cm in mature plant height.

- **7.G.B.5** Solve real-world and mathematical problems involving area, volume, and surface area of two- and three-dimensional objects composed of triangles, quadrilaterals, polygons, cubes, and right prisms.
- **8.F.A.1** Understand that a function is a rule that assigns to each input exactly one output. The graph of a function is the set of ordered pairs consisting of an input and the corresponding output. (Function notation is not required in 8th grade.)
- **8.F.A.2** Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). For example, given a linear function represented by a table of values and another linear function represented by an algebraic expression, determine which function has the greater rate of change.
- **8.F.A.3** Know and interpret the equation y = mx + b as defining a linear function, whose graph is a straight line; give examples of functions that are not linear. For example, the function A = s2 giving the area of a square as a function of its side length is not linear because its graph contains the points (1,1), (2,4) and (3,9), which are not on a straight line.
- **8.F.B.4** Construct a function to model a linear relationship between two quantities. Determine the rate of change and initial value of the function from a description of a relationship or from two (x, y) values, including reading these from a table or from a graph. Interpret the rate of change and initial value of a linear function in terms of the situation it models and in terms of its graph or a table of values.
- **8.F.B.5** Describe qualitatively the functional relationship between two quantities by analyzing a graph (e.g., where the function is increasing or decreasing, linear or nonlinear). Sketch a graph that exhibits the qualitative features of a function that has been described verbally.
- **8.G.C.7** Know and understand the formulas for the volumes of cones, cylinders, and spheres, and use them to solve real-world and mathematical problems.

Term 4

Unit 7: Exponents and Scientific Notation

- **8.EE.A.1** Know and apply the properties of integer exponents to generate equivalent numerical expressions. For example, $32 \times 3 5 = 3 3 = 1/33 = 1/27$.
- **8.EE.A.3** Use numbers expressed in the form of a single digit times an integer power of 10 to estimate very large or very small quantities and to express how many times as much one is than the other. For example, estimate the population of the United States as 3 x 108 and the population of the world as 7 x 109, and determine that the world population is more than 20 times larger.
- **8.EE.A.4** Perform operations with numbers expressed in scientific notation, including problems where both decimal and scientific notation are used. Use scientific notation and choose units of appropriate size for measurements of very large or very small quantities (e.g., use millimeters per year for seafloor spreading). Interpret scientific notation that has been generated by technology.

Unit 8: Pythagorean Theorem and Irrational Numbers

- **8.NS.A.1** Know that numbers that are not rational are called irrational. Understand informally that every number has a decimal expansion; for rational numbers show that the decimal expansion repeats eventually or terminates, and convert a decimal expansion which repeats eventually or terminates into a rational number.
- **8.NS.A.2** Use rational approximations of irrational numbers to compare the size of irrational numbers locating them approximately on a number line diagram. Estimate the value of irrational expressions such as $\pi 2$. For example, by truncating the decimal expansion of $\sqrt{2}$, show that $\sqrt{2}$ is between 1 and 2, then between 1.4 and 1.5, and explain how to continue on to get better approximations.
 - **8.EE.A.2** Use square root and cube root symbols to represent solutions to equations of the form x2 = p and x3 = p, where p is a positive rational number. Evaluate square roots of small perfect squares and cube roots of small perfect cubes. Know that $\sqrt{2}$ is irrational.
 - **8.G.B.4** Explain a proof of the Pythagorean Theorem and its converse.
 - **8.G.B.5** Know and apply the Pythagorean Theorem to determine unknown side lengths in right triangles in real-world and mathematical problems in two and three dimensions.
 - **8.G.B.6** Apply the Pythagorean Theorem to find the distance between two points in a coordinate system.