AP Calculus BC

	UNIT	Standards Addressed
Term 1	Unit 1: Functional Analysis	- Represent functions numerically, graphically, algebraically and verbally. - Classify and graph the elementary functions: power, root, polynomial, rational, algebraic, and transcendental (exponential, logarithmic, trigonometric and inverse trigonometric). - Transform functions by shifting, stretching and reflecting. - Analyze the differences in graphs $f(x), f(\|x\|)$, and, $\|f(x)\|$ - Define inverse functions and form function compositions. - Analyze and graph planar curves including those given in parametric form, polar form and vector form.
	Unit 2: Limits and Continuity	- Calculate limits using algebra. - Estimate limits from graphs or tables of data. - Determine asymptotic behavior graphically and by using infinite limits analysis. - Compare both relative magnitudes of functions and their rates of change. - Determine the continuity of a function at a point. - Apply graphical interpretations of continuity as in the Intermediate Value Theorem and the Extreme Value Theorem.
	Unit 3-4: Differentiation	- Define the derivative as a limit of the difference quotient. - Interpret the derivative as an instantaneous rate of change. - Relate the concepts of differentiability and continuity. - Find the slope of a curve at a point and use it to write an equation of a tangent line if one exists. - Use the tangent line as a linear approximation and graphically extend the concept of differentiability to local linearity. - Approximate rate of change from graphs and data. - Connect concepts of average vs. instantaneous rates of change and interpret verbally. - Use differentiation rules for sums, products, quotients and compositions involving the elementary functions (power, exponential, logarithmic, trigonometric and inverse trigonometric) of single variable calculus. - Differentiate implicitly defined functions. - Differentiate parametric, polar and vector functions.

AP Calculus BC cont.

	UNIT	Standards Addressed
	Unit 5: Applications of Differentiation	- Use $f^{\prime}(x)$ and $f^{\prime \prime}(x)$ to analyze both the local and global behavior of the graph of $f(x)$, including characteristics such as monotonicity, concavity, extrema and points of inflection. - Find corresponding relationships among the graphs of $f(x)$, $f^{\prime}(x)$, and $f^{\prime \prime}(x)$. - Use the Mean Value Theorem and know its geometric consequences. - Optimize, finding both absolute and relative extrema. - Model rates of change, including related rates. - Use the derivative in the study of motion: speed, velocity and acceleration for both elementary functions and for planar curves which are given in parametric, polar or vector form.
Term 2	Unit 6: Integration	- Compute Riemann sums using left, right and midpoint evaluation points. - Investigate upper and lower Riemann sums. - Recognize the definite integral as a limit of Riemann sums over equal subdivisions. - Interpret the definite integral of the rate of change of a quantity over an interval as the change of the quantity over the interval. - Use basic properties of definite integrals. - Understand the basic premise of the Fundamental Theorem of Calculus, that is, integration is antidifferentiation. - Use the Fundamental Theorem of Calculus to evaluate definite integrals. - Connect both the concept of accumulation and the analytical features of the Fundamental Theorem of Calculus in interpreting the graphs of integral functions. - Find antiderivatives analytically including a substitution of variables technique including change of limits for definite integrals. - Use Riemann and trapezoidal sums to approximate definite integrals of functions represented algebraically, geometrically and by tables of values. - Antidifferentiate using integration by parts and partial fractions techniques.

AP Calculus BC cont.

	UNIT	Standards Addressed
Term 3	Unit 8: Applications of Integration	- Use integrals to model physical, social or economic situations. - Compute the area of a region. - Compute volumes of solids of revolution and volumes of solids with known cross sections. - Compute the distance traveled by a particle along a line. - Determine the average value of a function over an interval and understand the geometric interpretation of average value. - Use the integral of a rate of change to give accumulated change. - Use data and Riemann summing to approximate definite integrals. - Compute arc length (function or parametric). - Compute polar area.
	Unit 7: Differential Equations	- Write equations involving derivatives from verbal descriptions (and vice versa). - Find specific antiderivatives using boundary conditions. - Solve separable differential equations and use them in modeling, such as exponential growth. - Interpret differential equations geometrically via slope fields. - Numerically approximate solutions to differential equations using Euler's Method. - Solve logistic differential equations and use them in modeling.
	Unit 9-10: Series and Polynomial Approximations	- Compute limits using L'Hospital's Rule. - Evaluate improper integrals (as limits of definite integrals). - Define a series as a sequence of partial sums. - Review geometric series and applications and the harmonic series. - Determine convergence or divergence of a series of constants using the Integral Test, p-Series Test, Ratio Test, Comparison Tests and the Alternating Series Test. - Interpret terms of a series as areas of rectangles and their relationship to improper integrals. - Determine error bound in the sum of an alternating series. - Write Taylor and Maclaurin Series for functions. - Understand and use graphical convergence of the Taylor and Maclaurin series. - Manipulate Taylor Series and use substitution, differentiation and antidifferentiation techniques to form new series from old series. - Find the radius and interval of convergence of power series. - Find the LaGrange error bound for Taylor polynomials.

AP Calculus BC

Major Assignments	Unit Tests
Field Trips	No Field Trips
Instructional Materials	Canvas

